Lauricidin, 8 oz

Facebook
Twitter
Pinterest
WhatsApp

Lauricidin, 8 oz

$35.00

Description

Lauricidin, 8 oz, Med Chem Laboratories

Lauricidin® is pure sn-1 monolaurin (glycerol monolaurate) derived from coconut oil. Lauricidin® is intended to be taken daily like a multi-vitamin for at least three-six months at the recommended intake to support general immune health* and overall wellness*. Lauricidin® is intended to be taken for long-term support of general health and wellness and not intended to treat, diagnose, cure or prevent any disease.

The antiviral, antibacterial, and antiprotozoal properties of lauric acid and monolaurin have been recognized for nearly three decades by only a small number of researchers: their work, however, has resulted in 100 or more research papers and numerous U.S. and foreign patents. Prof. Dr. Jon J. Kabara performed the original seminal research in this area of fat research. Kabara (1968) first patented certain fatty acids (FAs) and their derivatives (e.g., monoglycerides (MGs) that can have adverse effects on various microorganisms. While nontoxic and approved as a direct food additive by the FDA, monolaurin (Lauricidin®) adversely affects bacteria, yeast, fungi, protozoa, and envelope viruses.

Kabara found that the properties that determine the anti-infective action of lipids are related to their structure: e.g., free fatty acids & monoglycerides. While the monoglycerides are active; diglycerides and triglycerides (fats) are inactive. Of the saturated fatty acids, lauric acid has greater antiviral activity than caprylic acid (C-8), capric acid (C-10), or myristic acid (C-14).

Fatty acids and monoglycerides produce their killing/inactivating effects by several mechanisms. An early postulated mechanism was the perturbing of the plasma membrane lipid bilayer. The antiviral action attributed to monolaurin is that of fluidizing the structure in the envelope of the virus, causing the disintegration of the microbial membrane. More recent studies, indicate that one antimicrobial effect in bacteria is related to monolaurin’s interference with signal transduction/toxin formation (Projan et al 1994). Another antimicrobial effect in viruses is due to lauric acid’s interference with virus assembly and viral maturation (Hornung et al 1994). The third mode of action may be on the immune system itself (Witcher et al, 1993).